Robust adaptive beamforming using a Bayesian steering vector error model

نویسندگان

  • Olivier Besson
  • Stéphanie Bidon
چکیده

We propose a Bayesian approach to robust adaptive beamforming which entails considering the steering vector of interest as a random variable with some prior distribution. The latter can be tuned in a simple way to reflect how far is the actual steering vector from its presumed value. Two different priors are proposed, namely a Bingham prior distribution and a distribution that directly reveals and depends upon the angle between the true and presumed steering vector. Accordingly, a non-informative prior is assigned to the interference plus noise covariance matrix R, which can be viewed as a means to introduce diagonal loading in a Bayesian framework. The minimum mean square distance estimate of the steering vector as well as the minimum mean square error estimate of R are derived and implemented using a Gibbs sampling strategy. Numerical simulations show that the new beamformers possess a very good rate of convergence even in the presence of steering vector errors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Adaptive Beamforming for Steering Vector Uncertainties Based on Equivalent Doas Method

The adaptive beamformers often suffer severe performance degradation when there exist uncertainties in the steering vector of interest. In this paper, we develop a new approach to robust adaptive beamforming in the presence of an unknown signal steering vector. Based on the observed data, we try to estimate an equivalent directionof-arrival (DOA) for each sensor, in which all factors causing th...

متن کامل

Robust Adaptive Beamforming with SSMUSIC Performance Optimization in the Presence of Steering Vector Errors

A novel subspace projection approach was proposed to improve the robustness of adaptive beamforming and direction finding algorithms. The cost function of the signal subspace scaled multiple signal classification (SSMUSIC) is minimized in the uncertainty set of the signal steering vector, the optimal solution to the optimization problem is that the assumed steering vector can be modified as the...

متن کامل

Iterative robust adaptive beamforming

The minimum power distortionless response beamformer has a good interference rejection capability, but the desired signal will be suppressed if signal steering vector or data covariance matrix is not precise. The worst-case performance optimization-based robust adaptive beamformer (WCB) has been developed to solve this problem. However, the solution of WCB cannot be expressed in a closed form, ...

متن کامل

A recursive Bayesian beamforming for steering vector uncertainties

A recursive Bayesian approach to narrowband beamforming for an uncertain steering vector of interest signal is presented. In this paper, the interference-plus-noise covariance matrix and signal power are assumed to be known. The steering vector is modeled as a complex Gaussian random vector that characterizes the level of steering vector uncertainty. Applying the Bayesian model, a recursive alg...

متن کامل

Study of Beamforming Methods with Steering Vector Errors

Robust Adaptive Beam forming algorithms face many insidious issues such as array steering vector errors which can significantly alter the array gain expected through beam forming. Other issues include coherent signal and interferers, problems like small sample size broadband interferences and so on. Therefore, there is a need to explore and investigate such beam forming methods that solve such ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2013